Ultimaker

Technical data sheet PP

Chemical composition See PP safety data sheet, section 3

Description Ultimaker PP (polypropylene) is durable. It has high toughness,

exceptional fatigue resistance, and low friction. It also has good chemical, temperature, and electrical resistance. PP is one of the most widely used plastics on the planet. From electrical components to living hinges, PP is

the go-to material for prototyping and end-use products

Key featuresDurable with high toughness and fatigue resistance (PP retains its

shape after torsion, bending, and/or flexing); low friction and smooth surfaces; semi-flexible; chemical-resistant to a wide range of bases and acids, including industrial cleaning agents; high electrical resistance; translucent; low density resulting in lightweight parts (high strength-to-weight ratio); excellent layer bonding; adequate bed adhesion and low

warping when using adhesion sheets

Applications Functional prototypes, living hinges, connectors, lab equipment,

moldings, stationery folders, packaging, storage boxes, protective covers,

and light shades

Non-suitable for Food contact applications and in vivo applications. Long term UV and/or

moisture immersion, and applications where the printed part is exposed

to temperatures higher than 105 °C

Filament specifications

	Value	Method
Diameter	2.85 ± 0.05 mm	-
Max roundness deviation	-	-
Net filament weight	500 g	-
Filament length	~ 88 m	-

Color information

Color	Color code		
PP Natural	N/A		

Mechanical properties*

	Injection molding		3D printing	
	Typical value	Test method	Typical value	Test method
Tensile modulus	390 MPa	ISO 527	220 MPa	ISO 527 (1 mm/min)
Tensile stress at yield	14 MPa	ISO 527	8.7 MPa	ISO 527 (50 mm/min)
Tensile stress at break	No break within testing range	ISO 527	No break within testing range	ISO 527 (50 mm/min)
Elongation at yield	13%	ISO 527	18%	ISO 527 (50 mm/min)
Elongation at break	> 200%	ISO 527	> 300%	ISO 527 (50 mm/min)
Flexural strength	14 MPa	ISO 178	13 MPa	ISO 178
Flexural modulus	350 MPa	ISO 178	305 MPa	ISO 178
Izod impact strength, notched (at 23 °C)	-	-	27.1 kJ/m ²	ISO 180
Charpy impact strength (at 23 °C)	10 kJ/m ²	ISO 179	-	
Hardness	55 (Shore D)	ISO 868	45 (Shore D)	Durometer

Electrical properties*

	Value	Test method	Typical value	Test method
Volume resistivity	$> 10^{16} \ \Omega \cdot \mathrm{cm}$	(Typical value)		
Dissipation factor (at 1 MHz)	-	-	0.003	ASTM D150-11
Dielectric constant (at 1 MHz)	-	-	1.91	ASTM D150-11

Thermal properties

	Typical value	Test method
Melt mass-flow rate (MFR)	20 g/10 min	ISO 1133 (230 °C, 2.16 kg)
Heat detection (at 0.455 MPa)	-	-
Heat deflection (at 1.82 MPa)	-	-
Vicat softening temperature at 5N	115 °C	ISO 306
Glass transition	-	-
Coefficient of thermal expansion		-
Melting temperature	130 °C	DSC
Thermal shrinkage	-	-

^{*}See notes

Other properties

	Value	Test method
Specific gravity	0.89	ISO 1183
Flame classification	-	-
Haze (1mmt)	28%	ISO 14782
Gloss	90%	ASTM D523

Notes

Properties reported here are average of a typical batch. The 3D printed test specimens were printed in the XY plane, using the normal quality profile in Ultimaker Cura 2.5, an Ultimaker 3, a 0.4 mm AA print core, and 90% infill. The values are the average of five natural specimens for the tensile, flexural, and impact tests. The Shore hardness D was measured in a 7-mm-thick square printed as indicated above with 100% infill. The electrical properties were measured on a 54-mm-diameter disk with 3 mm thickness printed in the XY plane, using the fine quality profile (0.1 mm layer height) in Ultimaker Cura 3.2.1, an Ultimaker 3, a 0.4 mm print core, and 100% infill. Ultimaker is constantly working on extending the TDS data.

Disclaimer

Any technical information or assistance provided herein is given and accepted at your risk, and neither Ultimaker nor its affiliates make any warranty relating to it or because of it. Neither Ultimaker nor its affiliates shall be responsible for the use of this information, or of any product, method or apparatus mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. No warranty is made of the merchantability or fitness of any product; and nothing herein waives any of Ultimaker's conditions of sale. Specifications are subject to change without notice.

Version 2.002

Date November 19, 2018